What do we know about transversity distributions of the nucleon?

Alexei Prokudin

Leading-twist TMD map

PDF map

quark polarization

nucleon polarization

	U	L	Т
U	f_1		h_1^{\bot}
L		g 1L	h_{1L}^{\perp}
Т	${\sf f_{1T}}^\perp$	g 1T	h ₁ h _{1T} ¹

$$f_1 = \bullet$$

$$g_1 = \bigcirc - \bigcirc$$

$$h_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

h₁ is the transversity distribution

Transversity is poorly known?

World data for F₂^p \mathbf{f}_1 from fits of thousands data

World data for g₁^p g₁ from fits of hundreds data

World data for h₁ from fits of tens data

Tensor Charge

See talk of Rajan Gupta

1st Mellin moment of transversity ⇒ tensor "charge"

$$\delta q \equiv g_T^q = \int_0^1 dx \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right]$$

tensor charge not directly accessible in \mathbf{L}_{SM} low-energy footprint of new physics at higher scales ?

Example: neutron β -decay $n \rightarrow p e^{-} \overline{\nu}_e$

BSM

$$\epsilon_{\rm T} g_{\rm T} \approx {\rm M_W}^2 / {\rm M_{BSM}}^2$$

Current precision of $0.1\% \Rightarrow [3-5]$ TeV bound for BSM scale

What did we know about transversity before the EIC whitepaper?

Boost and rotation do not commute → helicity and transversity are different!

Transversity is a chiral odd quantity → needs another chiral odd quantity to be measured in Semi Inclusive Deep Inelastic Scattering (SIDIS)

First extractions of transversity: the Collins effect

TMD factorization

 $A_{\text{SIDIS}}^{\sin(\phi_h + \phi_S)}(x, z, P_T^2) \sim \frac{\sum_q e_q^2 h_1^q(x, \boldsymbol{k}_{\perp}^2) \otimes H_{1,q}^{\perp}(z, \boldsymbol{p}_{\perp}^2)}{\sum_q e_q^2 f_1^q(x, \boldsymbol{k}_{\perp}^2) \otimes D_{1,q}(z, \boldsymbol{p}_{\perp}^2)}$

Efremov et al (2005), Vogelsang, Yuan (2005), Anselmino et al (2005,2009), Collins et al (2006)...

Anselmino et al., Nucl.Phys.Proc.Suppl. 191 (2009) 98-107

di-hadron fragmentation (DiFF)

Radici, Jakob, Bianconi, (2002)

chiral-odd DiFF

$$A_{\text{SIDIS}}^{\sin(\phi_R + \phi_S)}(x, z, M_h^2) \sim -\frac{\sum_q e_q^2 h_1^q(x) \frac{|\mathbf{R}_T|}{M_h} H_{1,q}^{\triangleleft}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z, M_h^2)}$$

$$Z = Z_1 + Z_2$$

price to pay: dependence on $(\pi\pi)$ invariant mass M_h

Bacchetta, Courtoy, Radici (2011)

What about factorization for other processes?

Collinear factorization for dihadron production

Artru & Collins, Z.Phys. **C69** (96) 277 Boer, Jakob, Radici, P.R.D**67** (03) 094003

Jaffe, Jin, Tang, P.R.L.**80** (98) 1166 Radici, Jakob, Bianconi, P.R.D**65** (02) 074031 Bacchetta & Radici, P.R. D**67** (03) 094002

Bacchetta & Radici, P.R. D70 (04) 094032

Collinear factorization for dihadron production

Jaffe, Jin, Tang, P.R.L.**80** (98) 1166 Radici, Jakob, Bianconi, P.R.D**65** (02) 074031 Bacchetta & Radici, P.R. D**67** (03) 094002 Bacchetta & Radici, P.R. D70 (04) 094032

Collins, Soper, Sterman (1985) Ji, Ma, Yuan (2004) Collins (2011)

- TMD factorization is valid generically for processes with two measured scales Q1 << Q2.
- Traditionally called "resummation" by CSS for cross sections.
- Later put in the form of evolution equations for TMD functions by Collins 11.
- Complicated color flow makes it difficult to prove factorization with > 2 hadrons involved.

Collins, Soper, Sterman (1985) Collins (2011)

Ji, Ma, Yuan (2005) Collins (2011)

Collins, Soper, Sterman (1985) Ji, Ma, Yuan (2004) Collins (2011)

See talks by Daniel Pitonyak,

Zhongbo Kang, Nobuo Sato

• Global analysis of TMDs and twist-3 is possible: All four processes can be used.

• Data are from HERMES, COMPASS, JLab, BaBar, Belle, RHIC, LHC, Fermilab

What have we learnt about transversity after the EIC whitepaper?

TMD fits: transversity and Collins FF

The first fit using TMD evolution

Kang et al., P.R. D**93** (16) 014009

Fits without TMD evolution

Anselmino et al., P.R. D93 (15) 034025

New data:

SIDIS data from hermes and

 e^+e^- data from

History of upgrading fits:

Anselmino et al., P.R. D87 (13) 094019

Anselmino et al., P.R. D92 (15) 114023

Anselmino et al., P.R. D93 (15) 034025

TMD fits: transversity and Collins FF

The first fit using TMD evolution

Fits without TMD evolution

Kang et al., P.R. D93 (16) 014009

Anselmino et al., P.R. D93 (15) 034025

 e^+e^- data from

and

Anselmino et al., P.R. D**92** (15) 114023

Anselmino et al., P.R. D**93** (15) 034025

The Pavia fit: transversity and DiFF

New data:

SIDIS data from hermes and

e+e- data from

History of upgrading fits:

Bacchetta, Courtoy, Radici, P.R.L. **107** (11) 012001

Bacchetta, Courtoy, Radici, JHEP **1303** (13) 119

Radici et al., IHEP **1505** (15) 123 slide courtesy of M. Radici

The Pavia fit: transversity and DiFF

New data:

SIDIS data from hermes and

History of upgrading fits:

Bacchetta, Courtoy, Radici, P.R.L. **107** (11) 012001

Bacchetta, Courtoy, Radici, JHEP **1303** (13) 119

Radici et al., JHEP **1505** (15) 123 slide courtesy of M. Radici

Tensor charge

$$Q^2 = 10 \text{ GeV}^2$$

$$\delta q \equiv g_T^q = \int_0^1 dx \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right]$$

truncated to data range $x \in [0.0065, 0.35]$

extrapolation to [0,1]

expect larger uncertainties

- Electron Ion Collider
- Jefferson Lab
- RHIC

are going to reduce uncertainties

What will we learn about transversity at an EIC?

- Electron beam: 11GeV and 8.8 GeV
- Targets: neutron (³He) and proton (NH₃)
- Luminosity: $\sim 10^{36}$ n cm⁻² s⁻¹, 10^{35} p cm⁻² s⁻¹
- Polar angle: $8^{\circ} \sim 24^{\circ}$
- Azimuthal angle: full 2π coverage
- In beam polarization: $\sim 60\%$ (³He), $\sim 70\%$ (NH₃)
- 4D bins with high precision

$$0.3 < z < 0.7$$

W' > 1.6 GeV
 $Q^2 > 1.0 \text{ GeV}^2$

Bayesian statistics is used to estimate the improvement from new data Current knowledge corresponds to a fit with TMD evolution *Kang et al., P.R. D93 (16) 014009*

The errors grow outside of the future data region as expected

Only combination of proton and neutron target measurements will ensure similar improvement for both u and d quark transversities

$$g_T = \delta u - \delta d$$
 isovector tensor charge

- Order of magnitude improvement is expected
- **Truncated** result is more reliable as no extrapolation is used
- Comparable with lattice QCD precision

"full" is contribution from 0 < x < 1 region "truncated" is contribution from 0.05 < x < 0.6

$$q_T = \delta u - \delta d$$
 isovector tensor charge

"full" is contribution from 0 < x < 1 region "truncated" is contribution from 0.05 < x < 0.6

- Order of magnitude improvement is expected
- **Truncated** result is more reliable as no extrapolation is used
- Comparable with lattice QCD precision
- Sea quark transversity is neglected
- Extrapolation can be unreliable in the region where data are not present

Radici et al (2015)

• Contribution from low-x region can be substantial: ~20% of tensor charge *Ye et al arXiv:1609.02449 (2016)*

RHIC: the process $p + p^{\uparrow} \rightarrow \pi + X$

Twist-3 factorization, fragmentation contributions

Kanazawa, Koike, Metz, Pitonyak (2014)

$$\begin{split} \frac{E_h d\sigma^{Frag}(S_P)}{d^3 \vec{P}_h} &= -\frac{4\alpha_s^2 M_h}{S} \, \epsilon^{P'PP_hS_P} \sum_i \sum_{a,b,c} \int_0^1 \frac{dz}{z^3} \int_0^1 dx' \int_0^1 dx \, \delta(\hat{s} + \hat{t} + \hat{u}) \\ &\times \frac{1}{\hat{s} \, (-x'\hat{t} - x\hat{u})} h_1^a(x) \, f_1^b(x') \, \bigg\{ \bigg[H_1^{\perp(1),\pi/c}(z) - z \frac{dH_1^{\perp(1),\pi/c}(z)}{dz} \bigg] \, S_{H_1^\perp}^i + \frac{1}{z} H^{\pi/c}(z) \, S_H^i \\ &\quad + \frac{2}{z} \int_z^\infty \frac{dz_1}{z_1^2} \frac{1}{\left(\frac{1}{z} - \frac{1}{z_1}\right)^2} \, \hat{H}_{FU}^{\pi/c,\Im}(z, z_1) \, S_{\hat{H}_{FU}}^i \bigg\} \,, \end{split}$$

Integration over **x** for transversity, conservation of momenta in $ab \rightarrow cd$: $x_{min} = -(U/z)/(T/z + S)$

$$\int_{x_{min}}^{1} \frac{dx}{x}$$

RHIC data is sensitive to high-x behavior of transversity quark-gluon channel is dominant contribution for large $x_{\rm F}$

More complicated structure of cross-section, additional functions to study

Improving errors in large-x region?

Analysis in progress.

RHIC: the process $p + p^{\uparrow} \rightarrow (\pi \pi) + X$

Bacchetta & Radici, P.R. D**70** (04) 094032

Assuming universality of functions for this process

$$d\sigma \sim d\sigma^0 + \sin(\Phi_S - \Phi_R) d\sigma_{UT}$$

$$\begin{split} A_{UT}(\eta,|\pmb{P}_T|,M_h) = & \frac{|\pmb{S}_{BT}|2|\pmb{P}_T|}{d\sigma^0} \frac{|\pmb{R}_T|}{M_h} \sum_{a,b,c,d} \int \frac{dx_a dx_b}{16\pi\bar{z}} \\ & \times f_1^a(x_a) h_1^b(x_b) \frac{d\Delta \hat{\sigma}_{ab^\uparrow \to c^\uparrow d}}{d\hat{t}} H_1^{\lhd c}(\bar{z},M_h). \end{split}$$

STAR data vs replicas in Pavia fit

some replicas outside the 68% band from SIDIS fit show compatibility with p-p data in forward kinematics

Radici et al, P.R. D94 (16) 034032

RHIC: the process $p + p^{\uparrow} \rightarrow (\pi \pi) + X$

Bacchetta & Radici, P.R. D**70** (04) 094032

Assuming factorization and universality for this process

$$d\sigma \sim d\sigma^0 + \sin(\Phi_S - \Phi_R) d\sigma_{UT}$$

$$\begin{split} A_{UT}(\eta,|\pmb{P}_T|,M_h) = & \frac{|\pmb{S}_{BT}|2|\pmb{P}_T|}{d\sigma^0} \frac{|\pmb{R}_T|}{M_h} \sum_{a,b,c,d} \int \frac{dx_a dx_b}{16\pi\bar{z}} \\ & \times f_1^a(x_a) h_1^b(x_b) \frac{d\Delta \hat{\sigma}_{ab^\uparrow \to c^\uparrow d}}{d\hat{t}} H_1^{\lhd c}(\bar{z},M_h). \end{split}$$

STAR data vs replicas in Pavia fit

Improving errors in large-x region?

Global fit is in progress.

some replicas outside the 68% band from SIDIS fit show compatibility with p-p data in forward kinematics

Radici et al, P.R. D94 (16) 034032

Conclusions

- Transversity can be reliably extracted using data on single and di-hadron production. Both methods are useful to check universality of functions
- Tensor charge is useful for low energy exploration of BSM physics
- Data from JLab, RHIC, EIC will complement each other as they explore different kinematical regions
- Data from Electron Ion Collider will allow
 - Extend data to low-x region
 - Explore high-Q and high-x region to complement JLab, thus explore TMD higher twist contributions

- Possible important related topics (not covered in this talk):
 - Test relationship between collinear and TMD treatment
 - Separate reliably beam and target fragmentation regions
 - Other possible ways to explore transversity using chiral-odd GPDs?
 - Lattice QCD studies as benchmark and/or constraints in fits?

• ...

See talk by Leonard Gamberg See talk by Osvaldo Gonzalez Liuti, Goldstein, Courtoy, Gonzalez See talk by Rajan Gupta

